

Interoperating Network Communications Architecture

a Technology Development Mission to Extend Commercial Networks to Space and More

ISS R&D Conference 2016 San Diego, California July 14, 2016

Presenter:

Gary Pearce Barnhard, President & CEO Xtraordinary Innovative Space Partnerships, Inc. (XISP-Inc)

gary.barnhard@xisp-inc.com www.xisp-inc.com

Outline

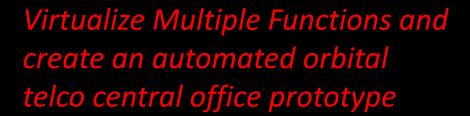
- The Problems Addressed . . .
- The Solution Proposed . . .
- Possible Applications . . .
- Conclusions . . .

The Problem Addressed . . .

Testing DTN Technology with Real World Requirements

Testing Delay Tolerant Networking Technology with Real World Requirements approaches the problem of maturation of Delay/Disturbance (DTN) technology and facilitating its use from an end-user requirements perspective.

Goal: Demonstrate that real world requirements can be accommodated by an operational implementation of DTN technology that allows it to be used as tool that meets customer requirements (performance, availability, and security) in a satisfactory and sufficient manner


Virtualize a Single Function and Test it's Efficacy in Near Realtime

The Problem Addressed . . .

Pervasively Networked DTN Gateway

A Pervasively Networked DTN Gateway approaches the problem of maturation of DTN technology and facilitating its use from an infrastructure perspective.

Goal: A pervasively networked point-of-presence gateway supporting quality of service based routing (performance, availability, and security) on all available internal and external networks accessible on the International Space Station for payload use consistent with operational guidelines.

The Problem Addressed . . .

Near-Earth Emergency Preparedness and Response Network

Near-Earth Emergency Preparedness and Response Network Focal Point approaches the problem of maturation of DTN technology and facilitating its use from a cooperating / interoperating network interface perspective with an emphasis on terrestrial applications.

Goal: Support the development and implementation of a Near-Earth Emergency Preparedness and Response Network by prototyping and testing readily deployable pervasively networked highly mobile point-of-presence systems including dynamically schedulable space assets

Demonstrate Earth Facing Applications

The Problem Addressed . . . Cislunar Pervasively Networked Communications

Cislunar Pervasively Networked Communications Technology Development approaches the problem of maturation of DTN technology and facilitating its use from a cooperating/interoperating network interface perspective with an emphasis on Cislunar applications.

Support the development and implementation of a Cislunar Communications Network by prototyping and testing readily integratable interface kits for allowing new - and where possible - existing space systems to be become cooperating / interoperating nodes interacting with pervasively networked point-of-presence systems.

Demonstrate Space Facing Applications

The Solution Proposed - 1

A set of technology development missions proposed for the International Space Station (ISS) which:

- 1. leverages available resources to serve as a testbed,
- 2. has an integral evolutionary path from experiment to infrastructure, and
- 3. helps to mitigate perceived cost, schedule, and technical risk associated with the accommodation and use of new communications technologies.

The Solution Proposed 2

INCA Experiment Elements

Function: Internet Banking
Purpose: Source of Real World
Performance/Availability/Security
Requirements

Value: Testing, which supports the verification, and validation of INCA Architecture with real interoperating network requirements

Function: Pervasively Networked

DTN Gateway

Purpose: Enables INCA QoS Based

Routing

Value: Testing INCA Architecture for

LEO/MEO/GEO Use

ITERATIVE

Function: Cis-Lunar Pervasively
Networked Communications Interface
Purpose: Enables & Demonstrates
BEO Application

Value: Testing INCA Architecture for

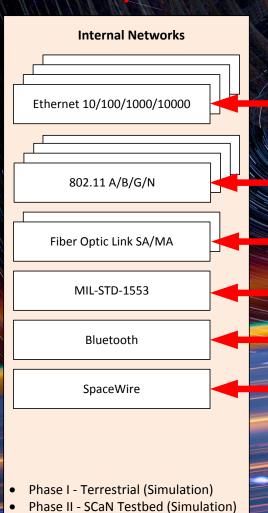
BEO Flight Project Use

RECURSIVE

Function: Near-Earth Emergency Preparedness and Response

Network

Purpose: Enables & Demonstrates


Terrestrial Application

Value: Testing INCA Architecture

for Terrestrial Use

The Solution Proposed 3

INCA Rervasively Networked Gateway w Quality of Service (QoS) Based Routing

Phase III - ISS (Real)

Gateway

Xrosslink Internet Services Protocol

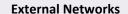
- Sense Networks
- Establish Links
- Characterize Links
- Define Link Contexts
- Model QoS Available
- Advertise QoS Available

Function Models

Application Models

Presentation Models

Session Models


Transport Models

Network Models

Data Link Models

Physical Models

Phase I thru III Simulation --> Real

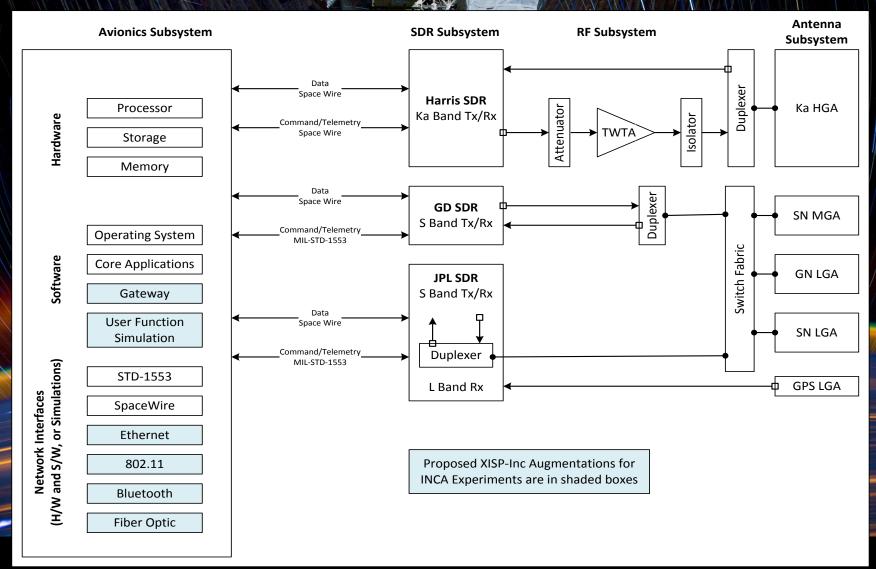
TDRSS*

S-Band Rx 300 kbps/Tx 6 Mbps Ku-Band Rx 25 Mbps/Tx 300 Mbps Ka-Band Rx 50 Mbps/Tx 300 Mbps

Other Infrastructure Ku/Ka Bands Relay & Space-to-Ground

> Satellite S Band Relay & Space-to-Ground

Amateur Radio VHF


Proximity Operations UHF

GPS L Band

Optical Links FSO

- Phase I Terrestrial (Simulation)
- Phase II SCaN Testbed (Real)
 - Phase III ISS (Real)

The Solution Proposed — 4 CA Augmented SCalv Testbed Functional Block Diagram

Possible Applications - 1

INCA Proposed Function Implementation

MISSION ANNEX 1 Testing DTN with Real World Requirements

Function Model Website Access w/ defined QoS Requirements

- End User Command Stream
- QoS Requirements Baseline
 - QoS Measurement

Performance/Availability/Security

- State Models
- Operational Guidelines
- Processed Data Storage
- Linked Page Implementation

Xrosslink Internet Services Protocol

- Defined Network
 - Establish Link
- Characterize Link
- Define Link Context
- Model QoS Available
- Advertise QoS Available

MISSION ANNEX 2 Pervasively Networked Gateway w/QoS Based Routing

Function Model Pervasively Networked Gateway w/ QoS Based Routing

- End User Command Stream
- QoS Requirements Baseline
 - QoS Measurement

Performance/Availability/Security

- State Models
- Operational Guidelines
- Processed Data Storage
- Linked Page Implementation

Xrosslink Internet Services Protocol

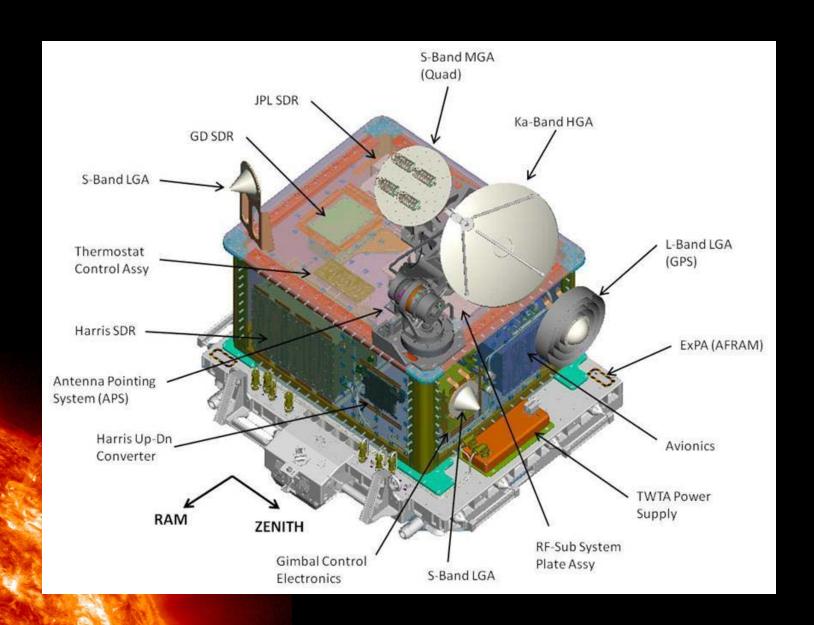
- Sense Networks
- Establish Links
- Characterize Links
- Define Link Contexts
- Model QoS Available
- Advertise QoS Available

Possible Applications – 2

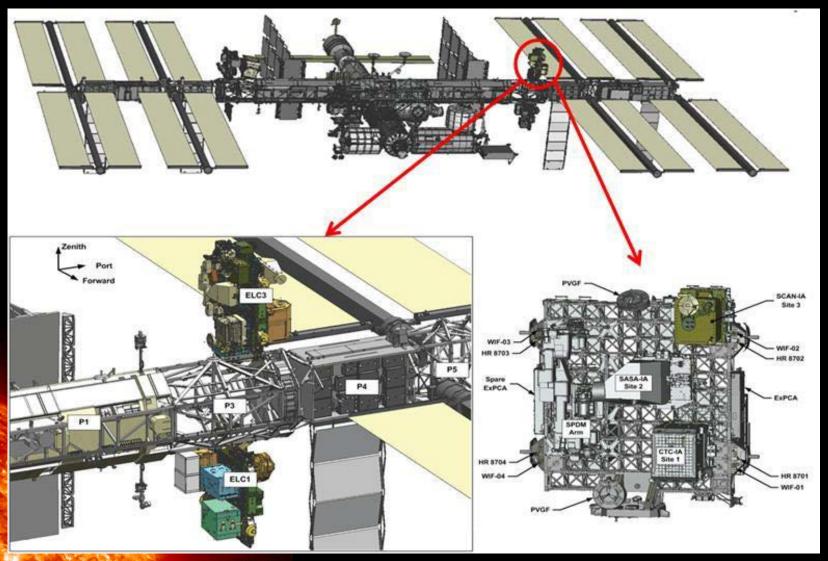
INCA Proposed Function Implementation (Continued)

MISSION ANNEX 3
Near Earth Emergency
Preparedness and
Response Network

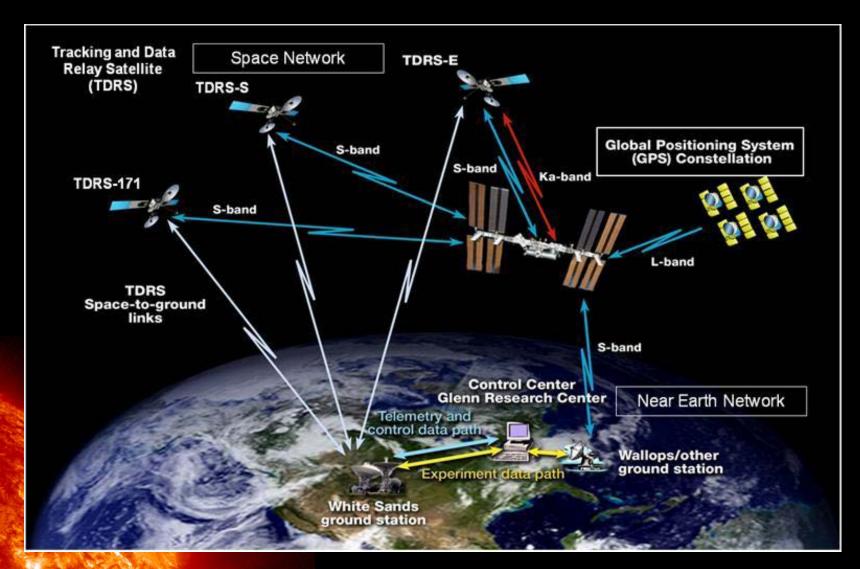
Function Model
Interoperating Earth Node
Interface Kit


- Hardware Requirements
- Software Requirements
 - Specifications
- Operational Guidelines

MISSION ANNEX 4
Cis-Lunar Pervasively
Networked
Communications
Technology Development


Function Model
Interoperating Space Node
Interface Kit

- Hardware Requirements
- Software Requirements
 - Specifications
- Operational Guidelines


ISS SCaN Testbed Components

ISS SCaN Testbed Location

SCaN Testbed System Overview

Conclusion

The path forward now entails:

- translating the narrative into actually building real systems that provide services of demonstrable value, and
- validating the same through peer review in the communities of interest.

It is through this cyclic process that maximum value can be derived from each increment of resources committed to this mission set as well as it's anticipated extensions and follow-ons.

The INCA mission is an XISP-Inc commercial mission moving forward as a supported mission under an existing Space Act Agreement with NASA ARC and a Space Act Umbrella Agreement under negotiation with NASA Headquarters.