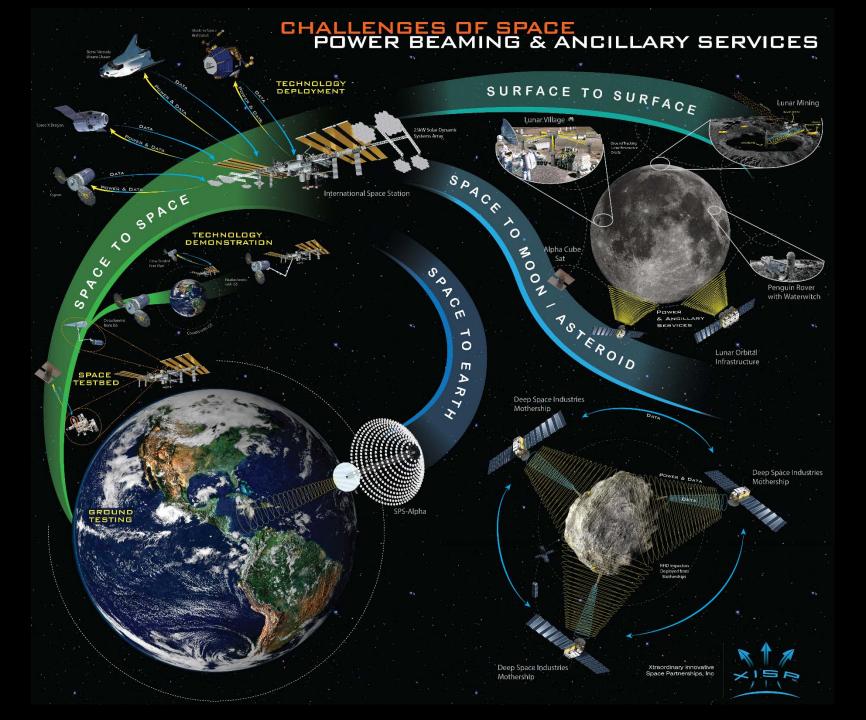
Power and Ancillary Services Beaming Reducing the Systems Engineering to Practice

Lunar Surface Innovation Consortium Power Beaming Workshop Thursday, July 22, 2021 -Friday, July 23, 2021

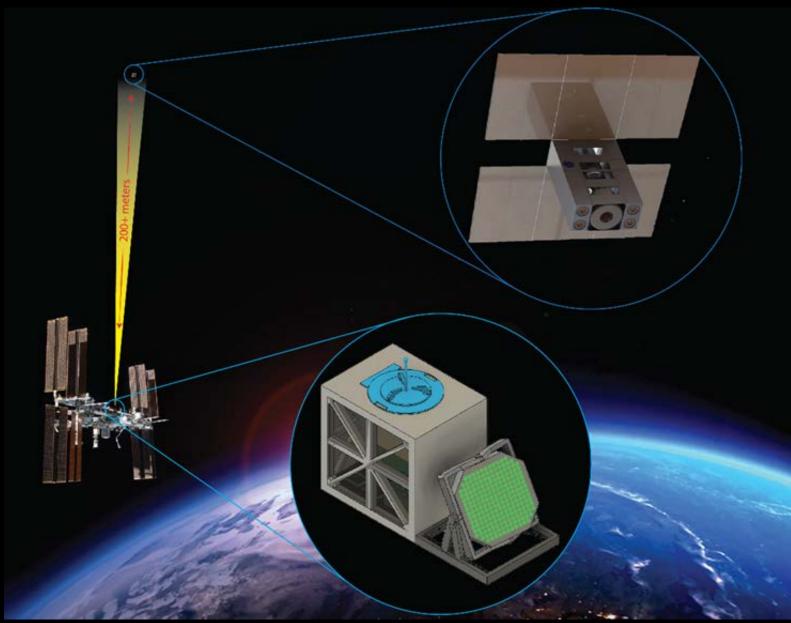
Gary Pearce Barnhard, President & CEO


Xtraordinary Innovative Space Partnerships, Inc. (XISP-Inc) gary.barnhard@xisp-inc.com

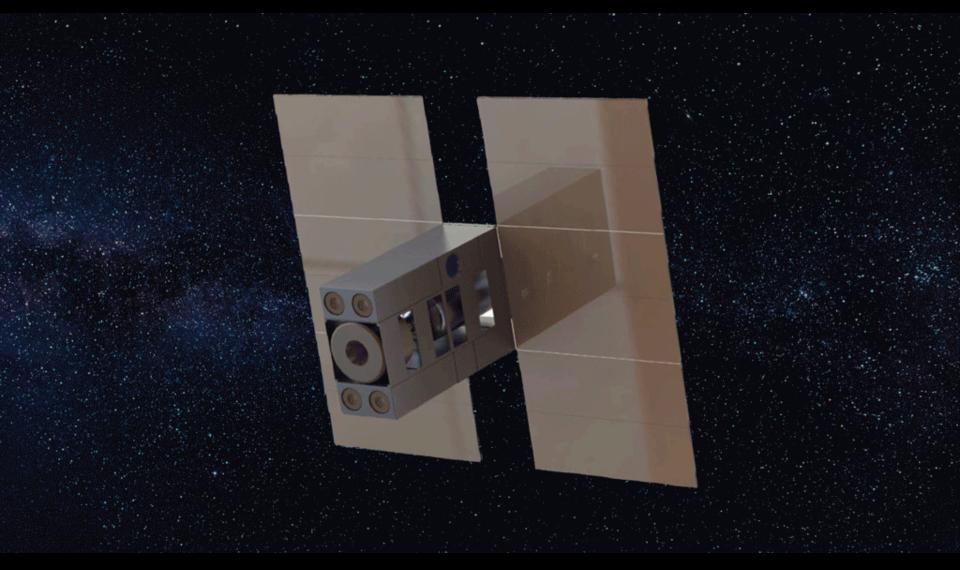
Seth D. Potter, PhD, XISP-Inc Senior Consultant

<u>sethpotter3@gmail.com</u>

www.xisp-inc.com


Space Solar Power Challenge Matrix

TDI	Space Solar Power Problem Space		Space Solar Power Solution Space			
TRL Advancement	Technology De	evelopment	Operational Capability/Applications			
	Ground	Space	Technology Demonstration	Technology Deployment		
Space - to - Space	 Cognitive SDR Transceiver Converged Electro/Optics W Band & Optical Apertures Piecewise Efficiency Reflectarray Rectenna Beam Forming Transducers (heat engines, CPV, TPV, fuel cells) Mgmt Ops Cont.App (MOCA) 	 ISS Mounted Transceiver Deployable Rectenna 6U Flight Test Article Optimized Frequencies End-to-End Efficiency Scaling/Modularity (Gen, Trans, Stor, Dist, and Cont) Multiplexing Services MOCA S/W & Data System 	 ISS Co-orbiting Crew Tended Free Flyer Demo Propulsion Augment Demo Space Based Propellant Depot Operations Demo Disaggregated Formation Flying Spacecraft Demo Plug in/Plug Out Tech Demo Solar Dynamic Demo 	 Power & Ancillary Services Beaming Interface Kit(s) Dispatchable Power & Ancillary Services Cislunar Propulsion Service Kilowatt scale services 		
Surface - to - Surface	 Deployable Power Generation & Relay Towers Conformal Rectenna Deployable Rectenna Solar Concentrator/Reflector Interoperable Heat Engines 	 Powered Rover Powered Prospector Powered Miner Volatile/Metal Separation Interoperable Heat Engines 	 Power & Ancillary Services Beaming - Survive the Night Volatiles Mining Demo Propellant Depot Demo Metals Mining Demo Interoperable Heat Engines 	 Dispatchable Power & Ancillary Services 24x7 Operations Support Kilowatt to Megawatt Scal Services Interoperable Power Service 		
Space - to - Moon / Asteroid	 Disaggregatable Flight Systems Technology Scalable Transceiver Scalable/Printable Rectenna Management Operations Control Applications (MOCA) 	 Mothership with deployable sensors/rovers Distributable Rectenna Lunar Resonant Orbits Beam Steering (Phased Array & Gimbals) Scalable, Modular, Maintainable Heat Engines 	 Power & Ancillary Services Beaming Demo Lunar Assay & Mining Demo Asteroidal Assay & Water/ Volatiles Mining Demo Asteroidal Optical Drilling, Volatiles Mining & Demo Metal Refining Demo Planetary Defense 	 Synergistic impact of Cislunar Development Dispatchable Power & Ancillary Services 24x7 Operations Support Megawatt to Gigawatt Sca Services 		
Space - to - Earth	 Lunar Resource Model Asteroidal Resource Model Drive launch costs down to \$100/kg to LEO Atmospheric Transparency Beam Management Frequency/Control/Security MOCA Authentication, Authorization and Control System 	 Modular Structure I/Fs (mechanical/robotic/ control/thermal) Thermal Management Pointing Large Structures Electro-Magnetic/Optical Alignment Solar Dynamic Modules Non-Iridium Based Concentrated Photovoltaic 	 Power & Ancillary Services Beaming to UAVs & Others Power & Ancillary Services Beaming to Forward Bases Power & Ancillary Services Beaming to Terrestrial Grid 	 Synergistic impact of Cislur Development Dispatchable Power & Ancillary Services National and International Geopolitical High Ground Gigawatt to Terawatt Scale Services 		


SSPB - Mission Overview

- Unbundle/disaggregate spacecraft electrical power systems
- Provide beamed power and ancillary services as a utility
- Support further development of power beaming technology
- SSPB mission divided into three linked phases: Technology Development, Demonstration, and Deployment (TD³) intended to bridge the technology "valley of death"
- TD³ mission defines a civilian non-weapons use space solar power
- Addressing real and perceived cost, schedule, and technical risks associated with Space Solar Power and ancillary services beaming
- Addressing multiple venues including: Space-to-Space, Space-to-Alternate Surfaces, as well as the potential for Space-to-Earth.
- Effort will lead to use of beamed energy to support:
 - sustained ISS co-orbiting free-flyer operations,
 - Enhanced power requirements/augmented propulsion,
 - loosely coupled modular architecture, and
 - new cluster architectures

SSPB Mission Overview

SSPB Mission Overview

Critical Considerations (1)

- Space Power and Ancillary Services infrastructure is an applied engineering problem and an economics problem.
 - <u>Applied Engineering</u> because the solutions are valued in terms of availability, durability, resilience, and maintainability not as new science and/or engineering
 - <u>Economics</u> because the solutions are necessarily sustainable utilities that will circumscribe what is possible
- Each application and venue has:
 - significant systems engineering and economic challenges
 - different fundamental figures of merit / value proposition.
- Operational capabilities are best realized by leveraging a combination of technology development "Push" and mission requirements "Pull".

Critical Considerations (2)

• Work Vectors:

Technology: Venues:

- Development → Demonstration → Deployment Space-to-Space → Surface-to-Surface
- → Space-to-Alternate Surface → Space-to-Earth
- <u>Each increment of public and/or private investment</u> should lead to an <u>operational capability</u> useful and used by one more other missions.
- The <u>efficacy</u> of any systems architecture <u>must consider the entire lifecycle of</u> <u>fielded equipment</u> with respect to cost analysis, functionality, scalability, durability, and maintainability.
- <u>Engineering solutions which leverage other mission investments should be</u> <u>given priority, but not exclusivity</u>.
- Furthermore, approaches should be biased to organically grow the <u>community of interest</u> so they become increasingly invested in the success of the endeavors.

Key Variables

- **Cost/Economics** (initial cost to first power, Levelized Cost of Electricity, market viability, anchor customers),
- Magnitude (power level supporting applications, scalability)
- **Distance** (near field, boundary regions, far field),
- Frequency/Wavelength (microwave to eye-safe optical),
- Voltage/Amperage (input, output, transforms)
- Duration (pulsed, scheduled, continuous),
- Availability (dispatchable, on demand, scheduled, prioritized, by exception, resilience, interoperability),
- Security (misuse, interruption, destruction, safety),
- **Performance** (net transfer, end-to-end efficiency, piecewise efficiency, steering precision and accuracy, beam shaping, effective operational difference),
- Logistics (mass, volume, modularity, durability, maintainability),
- Environmental (temperature, radiation, degradation), and
- Technology Readiness Level [TRL] (cost, schedule, and technical risk)

Power Density* versus the Solar Constant

$$p_d = \frac{A_t P_t}{\lambda^2 D^2}$$

 p_d is the power density at the center of the receiving location

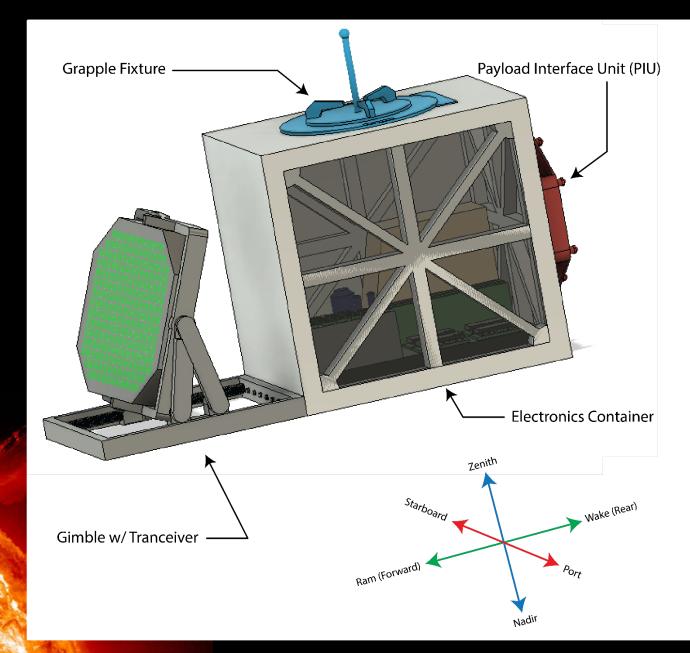
 P_t is the total radiated power from the transmitter

 A_t is the total area of the transmitting antenna

 λ^2 is the wavelength squared

 $D^2\,$ is the separation between the apertures squared

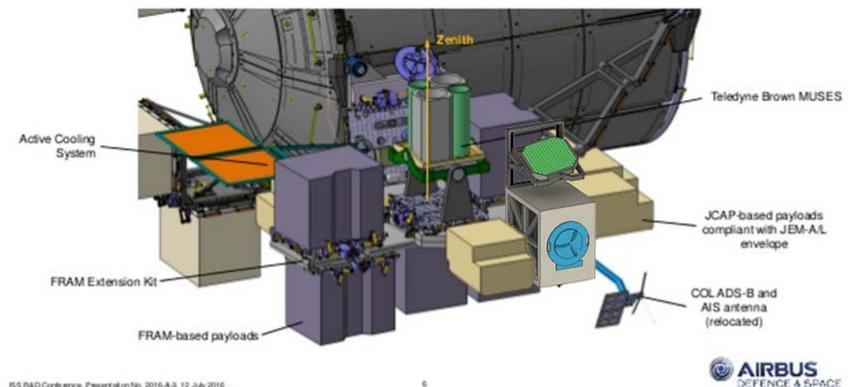
	Power Density (Watts/cm ²)	Power Density (Watts/cm ²)	Power Density (Watts/cm ²)
	P _d	P _d	P _d
	Case 1 @26.5 GHz	Case 2 @36 GHz	Case 3 @95 GHz
Table 1. Power Density with D=200 m, P_t = 3000 W and A_t = 1642 cm ²	0.00964	0.01774	0.12331
Table 2. Power Density with D=200 m, P_t = 6000 W and A_t = 1642 cm ²	0.01929	0.03549	0.24661
Table 3. Power Density with D=200 m, P_t = 3000 W and A_t = 10000 cm ²	0.05874	0.10809	0.75108
Table 4. Power Density with D=200 m, P_t = 6000 W and A_t = 10000 cm ²	0.11747	0.21617	1.50216
	P _d significantly lower than I _{sc} P _d similar to I _{sc} P _d significantly higher than I _{sc}		
$I_{sc} = Solar \ Constant \ at \ 1 \ AU = 0.1367 \ Watts/cm2$			


Table 5. Comparing Beaming Power Density and the Solar Constant

1 - Barnhard, Gary Pearce Space-to Space Power Beaming AIAA Space 2017

2 - William C. Brown, Life Fellow, IEEE, and E. Eugene Eves, Beamed Microwave Power Transmission and its

Application to Space, IEEE Transactions On Microwave Theory and Techniques, Vol. 40, No. 6. June 1992


SSPB Transceiver Preliminary Design Isometric

Barto Exposed Facility Accommodations

Commend al External Payload Hosting Facility on ISS

Bartolomeo On-orbit Configuration (3/4)

JEM Exposed Facility Accommodations

Cygnus & Dragon Free flyers

Applications & Customers

- Commercial space beaming applications include:
 - Expansion of operational mission capabilities,
 - Power densities an order of magnitude above I_{sc}
 - Multiplexed power and ancillary services (e.g., comm, data, navigation, time → Situational Awareness)
 - Enhanced spacecraft/infrastructure design flexibility, and
 - out-bound orbital trajectory insertion propulsion, and
 - pave the way for the Lunar Power & Light Company.
- Government space applications include:
 - Sustainable, interoperable, high power generation, storage, and distribution
 - Frequency agnostic extension of cognitive software defined radios
 - Operational Flexibility + Situation Awareness = Enhanced Space Power

SSPB & Commercial Evolution

- Repurpose Cygnus Pressurized Logistics Carriers as crew tended co-orbiting labs with fault tolerant power and auxiliary services for some number of cycles.
- Support other co-orbiting crew-tended space manufacturing elements
- Lunar Power & Light Company a Cislunar utility
 - Enhanced ISS power & co-orbiting community
 - LEO Independent power generation & ancillary services distribution
 - MEO/HEO/GEO power generation & ancillary services distribution
 - Libration point/lunar orbit/lunar surface power generation & ancillary services distribution

Technological Challenges

- Physics of near field/ far field energy propagation understood.
- Use of radiant energy to transfer: power, data, force, &/or heat, either directly and/or by inducing near field effects at a distance, are not well understood
- Moreover, there is very limited engineering knowledge base of practical applications.
- Accordingly, this is applied engineering work, (a.k.a. technology development), not new physics.

<u>To optimize beaming applications we need to</u> better understand how each of the components of radiant energy can be made to interact in a controlled manner.

Technological Challenges -2

- Radiant energy components include
 - Electrical
 - Magnetic
 - Linear & Angular Momentum
 - Thermal
 - Data
- There are potential direct and indirect uses for each beam component

Use of any combination of these components has implications for all spacecraft systems (e.g., power, data, thermal, communications, navigation, tructures, GN&C, propulsion, payloads, etc.)

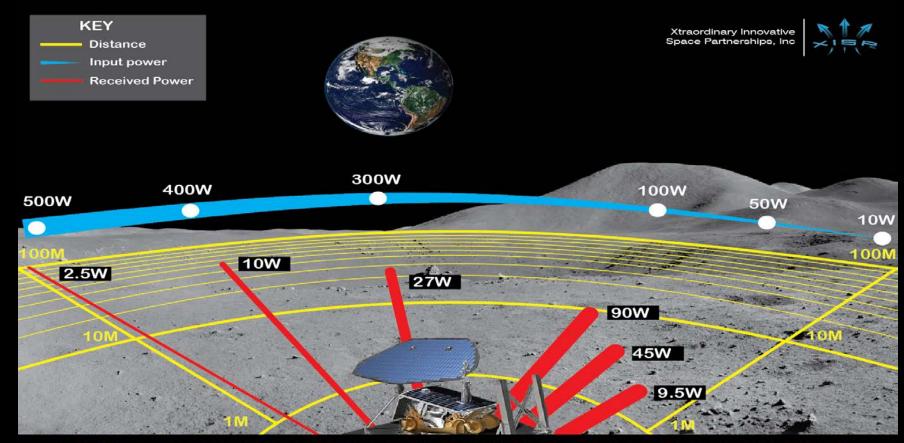
Technological Challenges - 3

- In theory, the use of the component interactions can enable:
 - Individual knowledge of position and orientation
 - Shared knowledge loose coupling /interfaces between related objects
 - Near network control (size to sense/proportionality to enable desired control)
 - Fixed and/or rotating planar beam projections
 - Potential for net velocity along any specified vector

In theory, there is no difference between theory and practice – but in practice, there is. – Jan L.A. van de Snepscheut computer scientist

Additional Challenges - 3

• <u>Economics</u>


 Map the financing to terrestrial electrical power and ancillary services utility analog that just happens to be in space.

- Each addressable market has different fundamental figures of merit.
- <u>Public/Private Partnerships</u>
- Drawing out the confluence of interests that can support substantive agreements
- <u>GeoPolitical</u>
- Make International Cooperation/Collaboration real.

REPRESENTATIVE TIMELINE

Energy TD³ Iterative and Recursive Milestones

	hnology velopment		nology onstration		echnology eployment	
Space	2019 ISS TD ³	2022 LEO TD ³	2025 GEO TD ³	2029 GEO TD ³	2038 GEO TD ³	2047 SSP's >
Solar	3-6 KW	~100 KW	~100 MW	~2 GW	10 GW	50 GW
Power	SSP Testbed	SSP LEO Demo	SSP GEO Demo	FullSSP		
Space-to-Space	NASA/DOD	NASA/DOD/DOE	NASA/DOD/DOE	ElectricalUtility		
• Space-to-Luna	Commercial	Commercial	Commercial	Commercial		
 Space-to-Earth 						
 Space-to-NEO 	Co-orbiting Test	ComSats Recovery	ComSats Primary	→ \$\$\$	→ \$\$\$\$\$	
 Space In situ 	Platform Model	Platform TD ³	Platform Ops	⇒ \$\$\$	→ \$\$\$\$\$	
• Luna-to-Luna	Spectrum Model	Spectrum Apply	Spectrum Allocation			
Earth-to-Earth	Orbit Slot Model	Orbit Slot Apply	Orbit Slot Allocation			
102232	LP&L Seed/Angel	LP&L Series A/B/C	LP&L IPO	→ \$\$\$	→ \$\$\$\$\$	» t a
18 1 8 1 V	Co-orbiting Tests	Co-orbiting Labs	Co-orbiting Facilities	⇒ \$\$\$	→ \$\$\$\$\$	
State 2		Lunar Test(s)	Lunar Operations	→ \$\$\$	→ \$\$\$\$\$	X TA
Sec. Star		NEO Test(s)	Asteroidal Assay	→ \$\$\$	⇒ \$\$\$\$\$	
ACCESS OF A DECKS						17

XISP-Inc Team Power & Ancillary Service Beaming Lunar Lander Payload Concept

Key Variables: Frequency = 92 GHz Ancillary Services up to 40 Gbps have been demonstrated using Primary Transceiver Aperture Area = .2 m² Primary Transceiver DC to RF Efficiency = 20% higher order modulation schemes Transceiver Aperture Area = .049 m² sceiver RF to DC Efficiency = 50% Free-path propagation loss included 100 ander Input Power = 10, 50, 100, 300, 400 and 500 W Conservative estimations of performance metrics based on measured component data were used Payload Received Power is shown for five representative input power + distance cases Actual Payload Power received would be optimized by adjusting variables for each application

Next Steps

- Space Solar Power and ancillary services Beaming (SSPB) is an XISP-Inc commercial TD³ mission moving forward with the advice and consent of NASA HEOMD.
- Requests for allocation of ISS National Lab Resources, Commercial Cargo space, ISS Integration Support, and mission development investment have been submitted.
- NASA may participate indirectly through ISS National Lab and/or through one or more direct means (e.g., solicitation awards, contracts for services/data, ISS Intergovernmental Agreements, space act agreement funding to accelerate and/or add additional milestones).
- In parallel, to provide an assured path to execution a direct commercial purchase of services agreement is being worked consistent with the enacted NASA ISS commercialization policy.
- Additional partners, participants, and customers are being sought across the commercial, academic, non-profit, and government sectors.
- Opportunities for international cooperation leveraging the ISS Intergovernmental Agreements are being developed.
- Balance of funding (cash & In-kind) will be raised from the SSPB consortium investments, and XISP-Inc debt/equity financing.

Conclusion

SSPB has transitioned from a conceptual mission pregnant with opportunity to a commercial mission with recognized standing.
 There is now a defined confluence of interests biased toward successful execution of the mission as Public Private Partnership.
 Successful demonstration of space solar power beaming will:

 Reduce the perceived cost, schedule, technical risk of SSP
 Pave the way for SSP use in multiple venues space-to-space, surface-to-surface, space-to-lunar/infrastructure surface, and space-to-Earth

Don't wait for the future, help us make it!

What's Next?

Lunar Power & Light Company

an XISP-Inc Consortium

Don't wait for the future, help us build it! www.xisp-inc.com

Resources

Commercial Lunar Propellant Architecture: A Collaborative Study of Lunar Propellant Production

http://cislunar.nss.org/wordpress/wp-content/uploads/2018/11/Commercial-Lunar-Propellant-Architecture.pdf

XISP-Inc Projects: http://www.xisp-inc.com/index-6-projects.html

Space Development Foundation: http://www.spacedevelopmentfoundation.org

Cislunar Marketplace: https://cislunar.nss.org