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Evolution ISS to support TD3 missions
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Space Solar Power Key Considerations




Space Solar Power Key Variables

e Cost/Economics (initial cost to first power, LCOE, market viability, anchor
customers),

e Frequency/Wavelength (microwave to eye-safe optical),

* \/oltage/Amperage (input, output, transforms)

e Distance (near field, boundary regions, far field),

e Magnitude (power level supporting applications, scalability)

e Duration (pulsed, scheduled, continuous),

e Availability (dispatchable, on demand, scheduled, prioritized, by exception,
resilience, interoperability),

e Security (misuse, interruption, destruction, safety),

e Performance (net transfer, end-to-end efficiency, piecewise efficiency, steering
precision and accuracy, beam shaping, effective operational difference),




Space-to-Space Power Beaming (SSPB)
Hypothesis

XISP-Inc has hypothesized that unbundling/disaggregating power
systems (i.e. the separation of power generation, transmission,
control, storage, and loads) can:

e reduce spacecraft complexity, mass and/or volume

e allow reallocation of spacecraft mass and/or volume

e alter the cadence of spacecraft mission operations

e reduce or eliminate solar pointing requirements

e impart additional delta-V to spacecraft/debris

- indirectly (power augmentation)

- directly (momentum transfer)




Space Solar Power Problem Space Space Solar Power Solution Space
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Sectors =» There are no unilateral sector options
Products/Services = Cislunar Electrical Utility that leverages the economies of scale
Customers =>» Near term service degraded systems
=>» Mid term enhanced new systems
=» Long term immortal systems infrastructure
Supplier/Resources = Trading the state-of-the-art vs. Satisfactory & Sufficient vs. optimal
both a systems engineering and an economics challenge. Robotics and
advanced automation are essential to meeting both challenges
Transportation = Foster the market — government(s) role as NACA/IACA and first customers
Investment/R&D =» Matching investment tranches, staging, perceived & actual
cost/schedule/technical risk, and returns
Intrastructure =>» Elements, linkages, and operational procedures must be defined
R Regulation = Create a regulatory framework that is informed and
N p driven by the confluence of interests
necessary to grow the market
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Sectors = Orchestration is essential in a cooperative+collaborative+competitive market.

Products/Services = Cislunar Electrical Utility demand will scale with demonstrated supply.
Customers =>» As soon as energy is available it will be used - Are customers really ready?
Supplier/Resources = Establish standards, make economic sense and scale - reality check!?
=» Robotics, advanced automation, and human involvement needed.
=» System trades require iterative and recursive Technology Development,
Demonstration, and Deployment (TD3)
Transportation = Match to mission requirements, be sustainable, and affordable to use.
Investment/R&D = Each increment of investment needs to lead to actual customer use.
Infrastructure = Elements, linkages, and operational procedures need definition & buy-in.
Regulation = Consistent long term government
. commitment to foster the market and help mitigate ™~ AN o7

YR w perceived and actual cost, schedule, and technical risk.
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Supplier/Resources
Transportation
Investment/R&D
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International Governmental Consortia

Government Consortia
Government-Commercial Consortia
Government-Not for profit Consortia
Commercial Consortia
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Cislunar Electrical Utility

Earth-to-Earth Wireless Energy
Space-to-Earth Wireless Energy
Space-to-Space Wireless Energy
Space-to -Luna Wireless Energy
Space-to-Asteroid Wireless Energy
Space Power Generation (insitu)

Product Catalog

Emergency Power
Backup Power
Auxiliary Power
Primary Power

Indirect/Direct Momentum Transfer
Allied Utilities (Comm, Nav, Data, etc.)
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Earth
Other Electrical Utilities (existing & new) =» less than 10 cents/kwh delivered to the grid
=>» environmentally benign
=» scalable to meet world demand
=>» accessible near where it is needed
=>» limited security issues

Military Logistics =>» cost per kwh is fungible provided that the required power is available

where it is needed, when it is needed, with no exceptions
Emergency Response Logistics =2 readily deployable, reasonable to operate, relatively low cost,
Remote Infrastructure Alternative =2 where SSP is a cost effective alternative to other available options
Transportation Vehicles = where SSP is a cost effective mission appropriate options
Kinetic storage, water desalination, synthetic fuel production =2 very low cost surplus power
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Space
* Transportation Vehicles

e Propulsion Augment (resistojets, etc.)
* Debris Mitigation

Bit Gathering/Processing/Transfer
e Constellation Systems

* Fractionated Systems

e Multi-Use/Customer Platforms
e Integrated Platforms

e Stand alone Spacecraft

Human and/or Robotic Facilities
e R&D Facilities
e Manufacturing Facilities

* Intermodal Facilities

* Processing Facilities (fuel, ores, etc.)
* Mining Facilities (water, ores, etc)

e Hospitality Facilities (tourist)

e Habitation Facilities

A




Lunar

Electrical Relay Infrastructure (new)
Exploration Vehicle Support
Emergency Response Logistics
Remote Infrastructure Alternative
Transportation Vehicles

Bit Gathering/Processing/Transfer

Allied Utilities (Comm, Nav, Data, etc)

Human and/or Robotic Facilities
R&D Facilities
Manufacturing Facilities

Intermodal Facilities

Processing Facilities (fuel, ores, etc.)
Mining Facilities (water, ores, etc)
Hospitality Facilities (tourist)
Habitation Facilities

A




Logistics
e Earth Launch Systems

e Transfer Systems
* Luna Launch Systems

Low Mass Power Generation

Radiant Energy Beaming

Microwave
Frequency Agnostic
Laser

Other Technologies

Photovoltaic

Solar concentrator

Solar Dynamic

Robotic Assembly Assets

Control & Damping of Large Structures
Piece Part Manufacturing in Space
High temperature tolerant electronics
Radiation tolerant electronics
Modular structures

Network Control Architectures
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Earth to LEO

LEO to Earth

LEO to LEO/MEO/HEO
LEO to GEO

LEO to Lunar Orbit
LEO to NEO

GEO to GEO

GEO to LEO

GEO to Lunar Orbit

Lunar Orbit to Luna
Lunar Orbit to Lunar Orbit
Lunar Orbit to GEO
Lunar Orbit to LEO
Lunar Orbit to NEO
NEO to NEO

NEO to Lunar Orbit
NEO to GEO

NEO to LEO

Luna to Lunar Orbit
GEO to NEO
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Low cost launch

Low cost transfers

Low cost mass production

High efficiency solar power generation
Control and Damping of large structures
Demonstration of Power Beaming

High Temperature Solar Cells
Luna/Lunar manufacturing

A




Transportation System

Network of Space Solar Powered Satellites
Ground Station "Rectennas" (receiving antennas)
Maintenance Capability

(As an exception) crewed teams for repairs
Asteroid Manufacturing

Lunar Manufacturing

A




Spectrum regulation

Inspection of System for Compliance with Outer Space Treaty
Space traffic Control

International Indemnification

Debris Management and Mitigation

Zoning on Earth Rectennas

WHO compliance for Health and Safety

A




Power Generation, Storage, and Distribution
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Brayton Cycle Heat Engine Block Diagram (Simple)
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Brayton Cycle Hear Engine Block Diagram w/Process Heat Options
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SSPB Transceiver Preliminary Design Isometric

Power /Heat Management Control and Distribution
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CLPS 15 Kg Power Beaming Testbed
XISP-Inc/Raytheon Proposal submitted for SMD LSITP 2019

Xtraordinary Innovative ‘{\ # ﬂ
Space Partnerships, Inc > 5
Bl .
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XISP-Inc WaterWitch Lunar Regolith Volatiles and Ore Prospecting
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Conclusion

» SSPB one of multiple examples has transitioned from a

conceptual mission pregnant with opportunity to a commercial
mission with recognized standing.

» There is now a defined confluence of interests biased toward
successful execution of the mission as public private partnership.
» Successful demonstration of space solar power beaming will:
1. Reduce the perceived cost, schedule, technical risk of SSP
2. Pave the way for SSP use in space-to-space, space-to-
lunar/infrastructure surface, and space-to-Earth
» Commercial space applications include:
% 1. enabling expansion of operational mission capabilities,
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SSPB Test Bed Experiments

End-to-End & Piecewise Efficiency Optimization
e DC===> Microwave,
e Beam Forming, Transmission, Rectenna
*  Microwave ===>DC
 Advanced Development of eye safe Optical

Transmitter & Rectenna Scalability using Cubesats
Far/Near Field Effects & Boundaries

Formation Flying/Alignment/Loosely Coupled Structures
Optimization/Scaling/Efficacy of the Solution Set

39




SSPB & Commercial Evolution

e Repurpose Cygnus Pressurized Logistics Carriers as crew tended
co-orbiting labs with fault tolerant power and auxiliary services for
some number of cycles.

e Support other co-orbiting crew-tended space manufacturing
elements

e Lunar Power & Light Company — a Cislunar utility

e Enhanced ISS power & co-orbiting community
e LEO Independent power generation & ancillary services
distribution
e MEO/HEO/GEO power generation & ancillary services
- distribution
v\.:‘““a- Libration point/lunar orbit/lunar surface power generation &
% sancillary services distribution

40



SSPB & Commercial On-Ramps
ISS Co-orbiting Free-flyers

e Micro-g manufacturing cells

Asteroidal Assay

e Co-orbiting motherships with landed sensors

Propulsion (delta-V augmentation)

e Qut bound & cycling spacecraft
e Debris management

Plug-In/Plug-Out Infrastructure Platforms

e Communications, Navigation, Power, etc.
e Earth facing, space operations, and space exploration




SSPB Mathematics & Efficiency

Technologies for wireless power transmission include:

* Microwave
e Laser
* Induction

Each of these methods vary with respect to:
 End-to-End Efficiency

e Effective distance/Range

e Power handling capacity/scalability

e Pointing & Targeting Requirements

* Safety Issues

"%+ Atmospheric Attenuation

42



SSPB Microwave Efficiency Data

DC to
Microwave
Conversion

Reception
Conversion to
DC

Free Space
Transmission

Circa 1992 Circa 1992 Circa 1992
80 — 90 % Efficient
Circa 2016 Circa 2016 Circa 2016
Comparable
@ <6 GHz

50%-80%
@ Higher Freq.

Theoretical Maximum Possible DC to DC Efficiency
Circa 1992 ~76%
Circa 2016 85-95%*** @ < 6 GHz and TBD @ Higher Frequencies

¥ Experimental DC to DC Efficiency Circa 1992 ~54 %, Circa 2016 TBD but significantly higher
R

B <\William C. Brown, Life Fellow, IEEE, and E. Eugene Eves, Beamed Microwave Power Transmission and its

Application to Space, IEEE Transactions On Microwave Theory and Techniques, Vol. 40, No. 6. June 1992
**depending on voltage multiplier ratio
***using one cycle modulation instead of pulse width modulation
Current High Frequency values based on input from current researchers (see paper for references)




SSPB Recent Fiber Laser Data

2013 — Propagation efficiencies of 90%, at 1.2km, 3kW CW — U.S. NRL

2013 — 10kW CW individual, single-mode, fiber lasers — U.S. NRL

2014 - 3kW three-fiber array, 80% efficiency — Northrup Grumman

2015 — 30kW combined fiber laser mobile system fielded — Lockheed Martin & U.S. Army
2017 — 60kW combined fiber laser mobile system fielded — Lockheed Martin & U.S. Army
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SSPB Recent Fiber Laser Data

2013 — Propagation efficiencies of 90 percent, at a range of 1.2 kilometers (km), with
transmitted continuous-wave power levels of 3 kilowatt (kW) — U.S. Naval Research
Laboratory
2013 - 10kW individual, single-mode, fiber lasers continuous power — U.S. Naval Research
Laboratory
2014 — Three-fiber array combining results, showing a constant 80% efficiency across a
broad range of input powers (0—3000W). — Northrup Grumman Two straightforward
changes appear likely to increase the combining efficiency from 80% to 90% or more.
First, combining more fibers increases Diffractive Optical Element (DOE) diffraction
efficiency, leading to greater combining efficiency as well as higher combined power. We
successfully fabricated DOEs with fiber channel counts ranging from 9-81, leading to
diffraction efficiencies of 97-99%, compared with only 92% for our three-fiber DOE.
Second, standardizing the design of the fiber amplifiers would reduce losses arising from
mode field and power mismatches and should also be relatively simple.
"T\- 2015 — 30kW combined fiber laser mobile system fielded — Lockheed Martin & U.S. Army
SR 2&;7 - 60kW combined fiber laser mobile system fielded — Lockheed Martin & U.S. Army
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SSPB Mathematics & Efficiency

Theoretical Limits & Other Considerations
e Diffraction
 Thermal capacity/heat tolerance
e Electromagnetic Environment
e Navigating Frequency Allocation & Use Issues
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Technological Challenges

Physics of near field/ far field energy propagation understood.
Use of radiant energy to transfer: power, data, force, &/or
heat, either directly and/or by inducing near field effects at a
distance, are not well understood

Moreover, there is very limited engineering knowledge base of
practical applications.

Accordingly, this is applied engineering work, (a.k.a.
technology development), not new physics.

47




Technological Challenges -2

e Radiant energy components include
e Electrical
* Magnetic
e Linear & Angular Momentum
e Thermal
 Data
 There are potential direct and indirect uses for each beam
component

Use of any combination of these components has
implications for all spacecraft systems (e.q., bower,

data, thermal, communications, navigation,
fiructures, GN&C, propulsion, payloads, etc.)
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Technological Challenges - 3

* In theory, the use of the component interactions can enable:

Individual knowledge of position and orientation
Shared knowledge loose coupling /interfaces between
related objects

Near network control (size to sense/proportionality to
enable desired control)

Fixed and/or rotating planar beam projections
Potential for net velocity along any specified vector
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Additional Challenges - 3

e Economics

— Map the financing to terrestrial electrical power and ancillary
services utility analog that just happens to be in space.

— Each addressable market has different fundamental figures of
merit.

e Public/Private Partnerships

— Drawing out the confluence of interests that can support
substantive agreements

e GeoPolictical

— Make International Cooperation/Collaboration real.

50
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