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Abstract 

This paper addresses the challenges of space power and ancillary services beaming in the context of opening the 

Cislunar marketplace.  More specifically, it provides updated status on the Technology Development, 

Demonstration, and Deployment (TD3) mission development efforts for:  

• ISS Space-to-Space Power ancillary services Beaming (SSPB)  

• Surface-to-Surface Power ancillary services Beaming (SSPasB) for lunar  applications  

• Space-to-Alternate Surfaces Moon/Asteroids  

• Space-to-Earth, as well as the 

• Opportunity to upgrade  ISS to better serve as a TD3 platform.  

The technology to enable providing wireless utility services (e.g., power, data, communications, navigation, time, 

heat, etc.) to multiple Clients/Customers (C/C) across Cislunar space (Karman line to the far side of the Moon) in a 

cost and resource effective manner is now moving forward. The availability of power and ancillary services (e.g., 

communications, data, navigation, time, etc.) is essential to most if not all aspects of lunar operations. The 

unbundling of space electrical power systems (i.e., separation of power generation, transmission, distribution, 

control, and loads) affords opportunities for redistribution of mass, overall volume, surface area, and complexity 

which can be mission enhancing/enabling. Increasing the availability of power and data transfer performance while 

simultaneously reducing the resource burden (mass, power, volume) to achieve the same that must be borne by the 

C/Cs will be mission enhancing if not mission enabling.  The narrative of the Cislunar Marketplace as a cooperative, 

collaborative, and competitive ecosystem of entities engaged in space development speaks to how we can achieve the 

”promise of the future”. This is directly relevant to the IAC Congress Theme of ”Space: The Power of the Past, the 

Promise of the Future”.  Going forward space development will accomplished by a combination of entities including: 

nation state sponsored space agencies, commercial firms, non-profit organizations, universities, inspired billionaires, 

and individuals that bring unique talents/resources to the table. The realization of space solar power systems across 

the Cislunar marketplace will be both mission enhancing and enabling. This multidisciplinary paper focuses on 

engaging the IAF technical audience in a collaborative discussion of the Challenges of Space Power and Ancillary 

Services Beaming as a Key to Opening the Cislunar Marketplace and the potential solution space for fostering space 

development. It is envisioned that these workshops could become an integral part of the ongoing work of the IAF 

and its constituent members, serving as multi-sector” industry” fora. 

 

I. INTRODUCTION 

 

Establishing the “Nexus” of ideas and capital which 

will enable the formation of the resources necessary to 

realize the value of power and ancillary services 

beaming has been the focus of the mission development 

efforts.  

The availability of power and ancillary services 

(e.g., communications, data, navigation, time, etc.) is 

essential to most if not all aspects of Cislunar 

operations.  

The unbundling of space electrical power systems 

(i.e., separation of power generation, transmission, 

storage, distribution, control, and loads) affords 

opportunities for redistribution of mass, overall volume, 

surface area, and complexity which can be mission 

enhancing/enabling. 

Increasing the availability of power and data 

transfer performance while simultaneously reducing the 

resource burden (mass, power, volume) to achieve the 

same that must be borne by the Clients/Customers will 

be mission enhancing if not mission enabling.  
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II. KEY CONSIDERATIONS 

Space Power and Ancillary Services infrastructure 

is an applied engineering problem and an economics 

problem. 

Applied Engineering because the solutions are 

valued in terms of availability, durability, resilience, and 

maintainability not as new science and/or engineering 

Economics because the solutions are necessarily 

sustainable utilities that will circumscribe what is 

possible 

Each application and venue has: 

 significant systems engineering and economic 

challenges 

 different fundamental figures of merit / value 

proposition. 

Operational capabilities are best realized by leveraging 

a combination of technology development “Push” and 

mission requirements “Pull”. Each increment of public 

and/or private investment should lead to an operational 

capability useful and used by one more other missions. 

 

III. KEY VARIABLES 

 

• Cost/Economics (initial cost to first power, LCOE, 

market viability, anchor customers), 

• Frequency/Wavelength (microwave to eye•-safe 

optical), 

• Voltage/Amperage (input, output, transforms) 

• Distance (near field, boundary regions, far field), 

• Magnitude (power level supporting applications, 

scalability) 

• Duration (pulsed, scheduled, continuous), 

• Availability (dispatchable, on demand, scheduled, 

prioritized, by exception, resilience, interoperability), 

• Security (misuse, interruption, destruction, safety),  

• Performance (net transfer, end•-to-end efficiency, 

piecewise efficiency, steering precision and accuracy, 

beam shaping, effective operational difference), 

• Logistics (mass, volume, modularity, durability, 

maintainability),  

• Environmental (temperature, radiation, degradation), 

and 

• Technology Readiness Level [TRL] (cost, schedule, 

and technical risk) 

 

IV. HYPOTHESIS 

 

The author has hypothesized that unbundling / 

disaggregating power systems (i.e. the separation of 

power generation, transmission, control, storage, 

distribution, and loads) can: 

• reduce spacecraft complexity, mass and/or volume 

• allow reallocation of spacecraft mass and/or volume 

• alter the cadence of spacecraft mission operations 

• reduce or eliminate solar pointing requirements 

• impart additional delta-V to spacecraft/debris 

  - Indirectly (power augmentation) 

  - Directly (momentum transfer) 

In addition, other novel approaches including but not 

limited to optical grounding are emerging in 

cooperation with other researchers. 

 

V. CHALLENGE MATRIX 

 

A challenge matrix (see Figure 1) was prepared by 

the author to characterize the Space Solar Power 

Problem Space and the Solution Space as a means of 

addressing incremental approaches to the development 

of space solar power technology.  The challenge matrix 

addresses two primary work vectors:   

Technology Readiness Level (TRL) Advancement:  

Development  Demonstration   Deployment 

 

Relative Value of Delivered Power by Venue:  

Space-to-Space  Surface-to-Surface  Space-to-

Alternate Surface  Space-to-Earth 

 

The Challenge Matrix is intended to support the 

definition of application overlays and draw out the 

synergistic relationship between work accomplished for 

different venues.   

The challenge with TRL advancement is being able 

to bridge the technology development valley of death 

and achieve a deployable system for each increment of 

resources committed without compromising the ability 

to further evolve the system.  This requires logical 

bounds for each increment of investment.  For example 

the existing ISS infrastructure can support up to 6 kW of 

input power to a single payload using two 3 kW Remote 

Power Controller circuits in certain locations (e,g, the 

JEM Exposed Facility).  Given the current ISS power 

generation limit of ~100 kW delivered to the power bus 

for use the input power limit for initial testing is 

effectively bounded.  However, the ISS power system 

was designed to enable power services up to 300kW 

delivered to users (i.e., 100 kW via the photovoltaic 

system and 200 kW from a modular solar dynamic 

system using eight 25 kW modules).  Accordingly, such 

an augment could enable the ISS to become a major 

power and ancillary services beaming resource for LEO 

co-orbiting systems and potential tests supporting 

systems in other locations. 

The challenge with respect to different venues is that 

all have different fundamental figures of merit that are 

driven by the relative value of delivered power.  For 

space-to-space applications the value per unit of power 

is very high since the availability of the same is mission 

enhancing if not mission enabling, and therefore directly 

impacts the Return On Investment (ROI) for impacted 

systems. For other venues the relative economics 

becomes a significant factor.  For Space-to-Earth the 

economics dominates the relative value calculation. 
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Figure 1 – Space Solar Power Challenge Matrix 

 

The visualization of the Challenge Matrix proved to 

be a challenge in and of itself.  As shown in Figure 2 – 

Challenges of Power and Ancillary Services Beaming.  

By showing the transitions from ground to space 

technology development and testbed work in the Space-

to-Space venue leading to the subsequent technology 

demonstration and deployment of matured systems.  

Then building on that infrastructure to realize Surface-

to-Surface systems, Space-to-Moon/Asteroid, and 

Space-to-Earth applications.  While the applications 

development starts out as a serial mission development 

arch the opportunities for parallel development 

leveraging any achievable synergies should prove cost 

effective to realize at the earliest opportunity.  The 

combination of the visualization, the narrative 

description of the key considerations, key attributes, and 

the Challenge Matrix, as well as the detailed analytical 

papers and presentations has successfully grown the 

community of interest in this body of work.    

 

VI. SSPB MISSION PROGRAMMATIC HISTORY 

The Space-to-Space Power Beaming (SSPB)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mission has evolved from a basic proof-of-concept 

testbed offering only measurable delivered power 

proposed to leverage the NASA Space Communications 

and Navigation (SCaN) testbed on ISS in cooperation 

with NASA HQ & NASA GRC.  Due to mission 

development review work that NASA required this 

approach was eventually obviated by ground analysis 

and test data from other non-space applications. 

Going forward the NASA ISS condition of 

satisfaction for support of the SSPB commercial 

mission established by the ISS Program Director was 

the engagement of the ISS U.S. National Lab payload 

broker the Center for the Advancement of Science in 

Space (CASIS) and the NASA Research Announcement 

(NRA) for ISS Technology Development rolling 

procurement out of NASA JSC Code OZ.  Based on the 

available resources XISP-Inc engaged CASIS first but 

they were unable and/or unwilling to go forward with 

the mission without the advice and consent of NASA.  

Obtaining that advice and consent required a white 

paper process and a subsequent mission development 

effort which culminated in the successful submittal of 

compliant proposal for evaluation under the NRA.  
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Figure 2 – Challenges of Power and Ancillary Services 

Beaming  

NASA determined that  

“Space-to-space power beaming is of interest to NASA 

and has the potential to affect a wide range of missions 

and is a potential key element of space infrastructure 

for the future. Overall, the proposal is relevant to 

NASA's exploration goals and reflects the involvement 

of a team with appropriate experience.  However, based 

upon the details of the proposal and the review of it 

performed by multiple organizations across the agency, 

we are not able to fund the proposed effort at this time. 

– George Nelson, NASA Code OZ NRA Manager March 

2017” 

 

On further review, since the mission was intended 

as a commercial one it was referred to CASIS with the 

advice and consent of NASA Code OZ for further 

mission development support as they saw fit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The XISP-Inc SSPB mission development work has 

continued with CASIS, now known as the U.S. National 

Lab, as a potential ISS resource allocation partner but 

not as funding resource. 

 

Subsequently, NASA has published an ISS 

Commercial Utilization Policy which sets forth a fixed 

price schedule of resources and services available for 

transportation to the ISS and for operations on and 

proximate to it.  This affords a basis for developing 

business plans with a high degree of cost and 

programmatic certainty to flight and operations, while 

not precluding government involvement (by NASA or 

any number of other agencies) in some form of 

Public/Private Partnership which could reduce 

scheduled costs.  At this point, the XISP-Inc 

commercial mission development efforts are focused on 

this path to flight. 
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VII. SSPB MISSION OVERVIEW 

The Space-to-Space Power Beaming (SSPB) 

• Unbundle/disaggregate spacecraft electrical power 

systems 

• Provide beamed power and ancillary services as a 

utility 

• Support further development of power beaming 

technology 

• SSPB mission divided into three linked phases: 

Technology Development, Demonstration, and 

Deployment (TD3) intended to bridge the technology 

“valley of death” 

• TD3 mission defines a civilian non-weapons use 

space solar power 

• Addressing real and perceived cost, schedule, and 

technical risks associated with Space Solar Power 

and ancillary services beaming 

• Addressing multiple venues including: Space-to-

Space, Space-to-Alternate Surfaces, as well as the 

potential for Space-to-Earth.  

• Effort will  lead to use of beamed energy to support:  

• sustained ISS co-orbiting free-flyer operations, 

• Enhanced power requirements/augmented 

propulsion, 

• loosely coupled modular architecture, and 

• new cluster architectures 

 

 Figure Y—SSPB Functional Block Diagram provides 

an outline of the primary interfaces that are integral to 

the mission. 
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Figure Y – SSPB Functional Block Diagram 

 

Figure X – Phase I & Follow on Concept of Operations 

lays out the baseline concept of operations for the SSPB 

mission.   
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Figure X – Phase I & Follow on Concept of Operations 

 

SSPB Phase I - Technology Development Components 

• Multi-band receiving antennas (rectennas) (Ka, W, 

and Optical)  

• Optimized Multi-band transceivers (Ka, W band, 

and Optical)  

• Multi-band phased array transmission apertures 

• Radiant energy beaming control and safety interlock 

system  

• Water based thrusters for propulsion/active attitude 

control 

• Power/Data/Communications/Navigation/Time 

Multiplexing 

• Power and allied utility waveforms for Software 

Defined Radios 

• Converged Radio Frequency & Optical SDR 

electronics  

 

SSPB Phase II - Technology Deployment Components 

• Radiant energy beaming testbed (integrated 

evolvable/scalable power and ancillary utilities)  

• Characterization of radiant energy beaming (near 

real-time, integrated with control)  

• Optimization of radiant energy beaming (near real-

time, integrated with control)  

• Formulation and testing of operational rules for the 

use of radiant energy beaming  

• CubeSat (Flight Test Article) Technology Readiness 

Level advancement to TRL 8/9  

•  

SSPB Phase III - Technology Deployment Components 

• ISS Co-orbiting Radiant Energy Beaming (200 m to 1 

km)  

• 6U Cubesat MSC released test with optimized 

transmitter & rectenna 

• NGIS Cygnus pressurized logistics carrier test with 

optimized transmitter & rectenna  

• Made In Space manufacturing protoflight rectenna 

(proposed)  
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• Evolved/scaled systems will address other markets for 

power and ancillary utilities delivery in LEO, MEO, 

HEO, GEO, Libration/Trajectory Waypoints, Lunar 

Orbits, and the Lunar Surface.  

• Power and allied utilities delivery will progress as 

systems are fielded.  

  

Emergency  Servicing Augment Backup 

Primary.  

 

Based on the parsimonious use of available ISS 

resources the SSPB ISS transceiver system design now 

incorporates the JEM Exposed Facility Standard 

Payload Interface, the Bartolomeo Oceaneering Space 

Systems Gold Interface, and the SSRMS Power/Data 

Grapple Fixture, and SPDM compatible OTCM 

interfaces where appropriate.  The baseline SSPB 

mission would see the SSPB ISS mounted transceiver 

first deployed on the Bartolomeo exposed facility where 

the input power is maximum is less than 1 kW but it is 

not over subscribed.  When resource allocations allow 

for it the SSPB transceiver can then be relocated to the 

JEM Exposed Facility when up to 6 kW input power 

can be provided if the resource allocation is made 

available. 

 

The flight test article is designed to accommodate 

the hybrid solar panel, rectenna, and communications 

antenna shown schematically in Figure X – Advanced 

multi-layer reflectarray panels. 

 

 
Figure X – Advanced multi-layer reflectarray panels 

 

The promise of power beaming as it relates to the 

SSPB mission and applications is drawn out by 

comparison between achievable power densities and the 

solar constant (Isc) Figure A – Comparing Beaming 

Power Density and the Solar Constant.  At the low end 

of Ka Band (~26.5 GHz) the SSPB achievable power 

density would be approximately an order of magnitude 

less than Isc.  At the high end of Ka Band (~36 GHz) the 

SSPB achievable power density would be 

approximately twice Isc.  However, in W band (~95 

GHz) the SSPB achievable power density would be 

approximately an order of magnitude higher than Isc.  

While there are many more aspects of system 

efficiency/performance to consider this table make it 

clear that there is some value to found in power 

beaming. 

 

Pd Pd Pd 

Case 1 @26.5 GHz Case 2 @36 GHz Case 3 @95 GHz

Table 1. Power Density with D=200 m, Pt= 3000 W and At = 1642 cm2
0.00964 0.01774 0.12331

Table 2. Power Density with D=200 m, Pt= 6000 W and At = 1642 cm2
0.01929 0.03549 0.24661

Table 3. Power Density with D=200 m, Pt= 3000 W and At = 10000 cm2
0.05874 0.10809 0.75108

Table 4. Power Density with D=200 m, Pt= 6000 W and At = 10000 cm2
0.11747 0.21617 1.50216

I sc = Solar Constant at 1 AU = 0.1367 Watts/cm2

Power Density 

(Watts/cm2)

Power Density 

(Watts/cm2)

Power Density 

(Watts/cm2)

Pd significantly lower than Isc

Pd similar to Isc

Pd significantly higher than Isc  

 

 

 

 

Figure A – Comparing Beaming Power Density and the 

Solar Constant.   

 

In cases where the rectenna aperture is not small in 

proportion to the transmitter aperture, transmitter power 

levels are high, and the frequency is high, power 

received (Pr) calculations break down using the far-field 

equations. Accordingly, the Pr is calculated using the 

collection efficiency method instead of the far-field 

equations. 

 

SSPB Phase Advancement Mission  

 

An alternative approach has been defined which 

advances the work directly to the support of a 

pressurized logistics carrier that would operate in a co-

orbiting free-flyer mode with ISS and other LEO objects 

making use of a robotically deployable functional 

equivalent of the six U cubesat power and ancillary 

services beaming test article already defined.  The test 

article would be collected at the ISS, the pressurized 

logistics carrier would deploy for a co-orbiting payload 

mission, and then return to ISS with the payload 

research products and the power and ancillary services 

beaming test article will be returned to its stowage 

point.  See Figure X – SSPB Phase I Concept of 

Operations Cygnus Optimized. 

 

VIII. PROBLEM / SOLUTION SPACE BLOCK 

DIAGRAMS 

The overall problem and solution space that power 

beaming is part of is the sustainable power generation, 

storage, and distribution is outline in block diagram 

shown in Figure 8.  The diagram is overlaid with a color 

key indicating if the TRL for the technologies involved 

are considered to be at a tipping point, susceptible to 

synergistic improvement, or are at stable TRL point 

representing mature technology.   
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The internal and external interfaces between the 

block elements can be further detailed based on first 

principles physics an example of which is shown in 

Figure 9. 

From the basic interface block diagram an optimized 

block diagram can be designed an example of which is 

shown in Figure 10. 
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Figure X – SSPB Phase I Concept of Operations 

Cygnus Optimized 
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Figure 2 – SSPB Mission Overview 

 

 
Figure 3 – SSPB Transceiver Preliminary Design 

 

 

Figure 4 – AIRBUS Bartolomeo Exposed Facility 

Accommodations 

 

 

Figure 5 – SSPB Transceiver Preliminary Design 

 

 

 

Figure 6 –Northrop Grumman Cygnus Logistics Module 

and Co-orbiting Free Flyer Candidate 

 

 

 

Figure 7 –SpaceX Dragon Logistics Module and Co-

orbiting Free Flyer Candidate 
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Figure 8 – Sustainable Power Generation, Storage, and 

Distribution  

 

Power Generation 
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use.  
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Figure 9 – Brayton Cycle Heat Engine Block Diagram 

(Simple) 
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Figure 10 – Brayton Cycle Hear Engine Block Diagram 

w/Process Heat Options 

 

Power Storage 

• Process Heat Options (high, medium, low, and 

rejected) 

• Stored Heat (thermal mass, phase change) 

• Stored Power (batteries, fuel cells hydrogen, oxygen, 

water, ice) 

• Storage/buffering of power is appropriate at the 

primary conversion point, at the crater floor 

substation, and/or at the actual electrical load point 

of use.  

• Allocation of these capabilities locations needs to be 

optimized to assure normal continuous operations as 

well as the ability to deal with contingency shut 

down situations. 

• Reversible fuel cell from the Space Shuttle is 

functionally equivalent to the ISRU electrolysis unit 

enabling interoperability / synergy for dispatchable 

power 
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IV. OTHER SOLUTION SPACE EXAMPLES 

 

 
Figure 11 - Surface-to-Surface Power & Ancillary 

Services Beaming 

 

 
Figure 13 – Advanced Lunar Power & Ancillary 

Services Beaming Infrastructure 

 

 
 

Figure 14 – WaterWitch Lunar Regolith Processing 
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Figure 15 - Early Space Station Design w/Solar 

Dynamic 

 

 

 

 
Figure 16 - LaRC/GRC 2kW Solar Dynamic Test 

 

 

 

 
Figure 17 - Solar Dynamic Components 

 

IX. CONCLUSION 

 

The physics of near field/ far field energy 

propagation are well understood areas of art and 

practice.  However, the use of radiant energy to transfer: 

power, data, force, &/or heat, either directly and/or by 

inducing near field effects at a distance, are not well 

understood.  Moreover, there is very limited engineering 

knowledge base of practical applications. Accordingly, 

this is applied engineering work, (a.k.a. technology 

development), not new physics. To optimize beaming 

applications we need to better understand how each of 

the components of radiant energy can be made to 

interact in a controlled manner.  

 

Radiant energy components include: 

• Electrical 

• Magnetic 

• Linear & Angular Momentum 

• Thermal 

• Data 

 

There are potential direct and indirect uses for each 

beam component. Use of any combination of these 

components has implications for all spacecraft systems 

(e.g., power, data, thermal, communications, navigation, 

structures, GN&C, propulsion, payloads, etc.) 

In theory, the use of the component interactions can 

enable:  

• Individual knowledge of position and orientation  

• Shared knowledge loose coupling /interfaces 

between related objects 

• Near network control  (size to 

sense/proportionality to enable desired control) 
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• Fixed and/or  rotating planar beam projections 

• Potential for net velocity along any specified 

vector 

 

In theory, there is no difference between theory and 

practice – but in practice, there is. 

  – Jan L.A. van de Snepscheut 

                     computer scientist 

Additional challenges that must be addressed 

include: 

• Economics  

– Map the financing to terrestrial electrical power 

and ancillary services utility analog that just 

happens to be in space. 

– Each addressable market has different 

fundamental figures of merit. 

• Public/Private Partnerships  

– Drawing out the confluence of interests that can 

support substantive agreements 

• Geopolitical  

– Make International Cooperation/Collaboration 

real. 
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